Rademacher Complexity of Margin Multi-category Classifiers

Yann Guermeur

LORIA - CNRS

WSOM+ 2017

June 30, 2017

- Agnostic Learning
- Margin Classifier
- 2 Scale-Sensitive Capacity Measures
- 3 State-of-the-Art Guaranteed Risks
 - Guaranteed Risk Based on the L_∞ -norm
 - Guaranteed Risk Based on the L2-norm
- Dimension-Free Generalized Sauer-Shelah Lemmas
 - State of the Art
 - Lp-norm Sauer-Shelah Lemma
 - L₂-norm Sauer-Shelah Lemma
- Upper Bounding the Rademacher Complexity
 - Chaining Method
 - Polynomial Growth of the $\gamma\text{-dimension}$
 - Multi-class Support Vector Machines
- 6 Conclusions and Ongoing Research

Agnostic Learning (Kearns et al., 1994)

Problem Characterization

- **1** Link between descriptions $x \in \mathcal{X}$ and their categories $y \in \mathcal{Y} = \llbracket 1, C \rrbracket$
- Existence of a random pair (X, Y) taking values in Z = X × Y, distributed according to a probability measure P
- The joint distribution of (X, Y) is unknown.

What is available

- $\mathbf{Z}_m = ((X_i, Y_i))_{1 \le i \le m}$: *m*-sample made up of independent copies of (X, Y)
- ◎ For $k \in [\![1, C]\!]$, \mathcal{G}_k : class of functions from \mathcal{X} into $[-M_{\mathcal{G}}, M_{\mathcal{G}}]$ with $M_{\mathcal{G}} \ge 1$ which is a uniform Glivenko-Cantelli class

Uniform Glivenko-Cantelli class

Definition 1 (Dudley et al., 1991)

Let $(\mathcal{T}, \mathcal{A}_{\mathcal{T}})$ be a measurable space and let T be a random variable with values in \mathcal{T} , distributed according to a probability measure P_T on $(\mathcal{T}, \mathcal{A}_T)$. For $n \in \mathbb{N}^*$, let $\mathbf{T}_n = (T_i)_{1 \leq i \leq n}$ be an n-sample made up of independent copies of T. Let \mathcal{F} be a class of measurable functions on \mathcal{T} . Then \mathcal{F} is a <u>uniform Glivenko-Cantelli class</u> if for every $\epsilon \in \mathbb{R}^*_+$,

$$\lim_{n \to +\infty} \sup_{P_{\mathcal{T}}} \mathbb{P}\left(\sup_{n' \ge n} \sup_{f \in \mathcal{F}} \left| \mathbb{E}_{\mathcal{T}' \sim P_{\mathsf{T}_{n'}}} \left[f(\mathcal{T}') \right] - \mathbb{E}_{\mathcal{T} \sim P_{\mathcal{T}}} \left[f(\mathcal{T}) \right] \right| > \epsilon \right) = 0,$$

where \mathbb{P} denotes the infinite product measure P_T^{∞} and $P_{\mathbf{T}_{n'}}$ denotes the empirical measure supported on $\mathbf{T}_{n'}$.

Margin Classifier

Pattern Classification

G = ∏^C_{k=1} G_k: class of functions g = (g_k)_{1≤k≤C}, from X into [-M_G, M_G]^C
 Decision rule dr: operator from G into (Y ∪ {*})^X mapping g to dr_g

$$\forall g \in \mathcal{G}, \forall x \in \mathcal{X}, \begin{cases} \left| \operatorname{argmax}_{1 \leqslant k \leqslant C} g_k(x) \right| = 1 \Longrightarrow \operatorname{dr}_g(x) = \operatorname{argmax}_{1 \leqslant k \leqslant C} g_k(x) \\ \left| \operatorname{argmax}_{1 \leqslant k \leqslant C} g_k(x) \right| > 1 \Longrightarrow \operatorname{dr}_g(x) = * \end{cases}$$

where $\left|\cdot\right|$ returns the cardinality of its argument and \ast stands for a dummy category

Function Selection

Minimization over \mathcal{G} of the <u>risk</u> $L(g) = \mathbb{E}_{Z \sim P} \left[\mathbb{1}_{\{ dr_g(X) \neq Y \}} \right] = P(dr_g(X) \neq Y)$

Margin

Definition 2 (Class of functions $\mathcal{F}_{\mathcal{G}}$)

Let \mathcal{G} be the class of functions computed by a margin multi-category classifier. For every $g \in \mathcal{G}$, the function f_g from $\mathcal{X} \times \llbracket 1, C \rrbracket$ into $[-M_{\mathcal{G}}, M_{\mathcal{G}}]$ is defined by:

$$orall\left(x,k
ight)\in\mathcal{X} imes\llbracket1,\mathcal{C}
ight
ceil, \ \ f_{g}\left(x,k
ight)=rac{1}{2}\left(g_{k}\left(x
ight)-\max_{l
eq k}g_{l}\left(x
ight)
ight).$$

Then, the class $\mathcal{F}_{\mathcal{G}}$ is defined as follows: $\mathcal{F}_{\mathcal{G}} = \{f_g : g \in \mathcal{G}\}.$

Definition 3 (Margin)

Let g be a function computed by a margin multi-category classifier. The <u>margin</u> of g on (x, y) is defined as $f_g(x, y)$.

 $L(g) = \mathbb{E}_{Z \sim P} \left[\mathbb{1}_{\{f_g(Z) \leq 0\}} \right]$

Intermargin bears useful information on the generalization performance.

Its exploitation calls for the implementation of a <u>scale-sensitive</u> approach.

Margin Risks

Definition 4 (Margin loss functions)

A class of margin loss functions ϕ_{γ} parameterized by $\gamma \in (0, 1]$ is a class of nonincreasing functions from \mathbb{R} into [0, 1] satisfying:

Definition 5 (Margin risk)

Let \mathcal{G} be the class of functions computed by a margin multi-category classifier and ϕ_{γ} a margin loss function. The <u>risk with margin γ </u> of $g \in \mathcal{G}$ is defined as:

$$L_{\gamma}\left(g\right) = \mathbb{E}_{Z \sim P}\left[\phi_{\gamma} \circ f_{g}\left(Z\right)\right].$$

 $L_{\gamma,m}(g)$ designates the corresponding empirical risk, measured on Z_m .

Guaranteed Risks

Definition 6 (Piecewise-linear squashing function π_{γ})

For $\gamma \in (0, 1]$, the piecewise-linear squashing function π_{γ} is defined by:

 $\forall t \in \mathbb{R}, \ \pi_{\gamma}(t) = t \mathbb{1}_{\{t \in (0,\gamma]\}} + \gamma \mathbb{1}_{\{t > \gamma\}}.$

Definition 7 (Class of functions $\mathcal{F}_{\mathcal{G},\gamma}$)

Let \mathcal{G} be the class of functions computed by a margin multi-category classifier. $\forall \gamma \in (0,1]$, the class $\mathcal{F}_{\mathcal{G},\gamma}$ is defined as follows: $\mathcal{F}_{\mathcal{G},\gamma} = \{f_{g,\gamma} = \pi_{\gamma} \circ f_{g} : g \in \mathcal{G}\}.$

Theorem 1 (Guaranteed risk)

Let \mathcal{G} be the class of functions computed by a margin multi-category classifier. Let $\gamma \in (0, 1]$ and $\delta \in (0, 1)$. With P^m -probability at least $1 - \delta$,

$$\sup_{g\in\mathcal{G}}\left(L\left(g\right)-L_{\gamma,m}\left(g\right)\right)\leqslant F\left(C,m,\gamma,\delta,d\left(\mathcal{F}_{\mathcal{G},\gamma}\right)\right)$$

where $d(\mathcal{F}_{\mathcal{G},\gamma})$ is a scale-sensitive measure of the capacity of $\mathcal{F}_{\mathcal{G},\gamma}$.

Theoretical Framework

- Agnostic Learning
- Margin Classifier

2 Scale-Sensitive Capacity Measures

- 3 State-of-the-Art Guaranteed Risks
 - Guaranteed Risk Based on the L_{∞} -norm
 - Guaranteed Risk Based on the L2-norm

Dimension-Free Generalized Sauer-Shelah Lemmas

- State of the Art
- L_p-norm Sauer-Shelah Lemma
- L₂-norm Sauer-Shelah Lemma

5 Upper Bounding the Rademacher Complexity

- Chaining Method
- Polynomial Growth of the $\gamma\text{-dimension}$
- Multi-class Support Vector Machines

6 Conclusions and Ongoing Research

Rademacher Complexity

Definition 8 (Rademacher complexity)

Let \mathcal{F} be a class of real-valued functions on \mathcal{T} . For $n \in \mathbb{N}^*$, let $\mathbf{T}_n = (T_i)_{1 \leq i \leq n}$ be a sequence of n i.i.d. random variables taking values in \mathcal{T} and let $\sigma_n = (\sigma_i)_{1 \leq i \leq n}$ be a Rademacher sequence. The <u>empirical Rademacher</u> <u>complexity</u> of \mathcal{F} given \mathbf{T}_n is

$$\hat{R}_{n}(\mathcal{F}) = \mathbb{E}_{\boldsymbol{\sigma}_{n}}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}f(T_{i}) \mid \mathbf{T}_{n}\right].$$

The Rademacher complexity of $\mathcal F$ is

$$R_{n}(\mathcal{F}) = \mathbb{E}_{\mathbf{T}_{n}}\left[\hat{R}_{n}(\mathcal{F})\right] = \mathbb{E}_{\mathbf{T}_{n}\sigma_{n}}\left[\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}f(T_{i})\right].$$

Covering Numbers

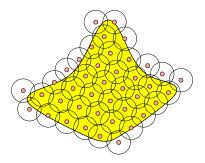


Figure : $\underline{\epsilon}$ -net and $\underline{\epsilon}$ -cover of a set \mathcal{E}' in a pseudo-metric space (\mathcal{E}, ρ)

Definition 9 (Covering numbers, Kolmogorov and Tihomirov, 1961) $\mathcal{N}(\epsilon, \mathcal{E}', \rho)$: minimal number of open balls of radius ϵ needed to cover \mathcal{E}' (or $+\infty$) $\mathcal{N}^{int}(\epsilon, \mathcal{E}', \rho)$: the ϵ -nets considered are included in \mathcal{E}' (proper to \mathcal{E}')

Packing Numbers

Definition 10 (Packing numbers, Kolmogorov and Tihomirov, 1961)

Let (\mathcal{E}, ρ) be a pseudo-metric space and $\epsilon \in \mathbb{R}^*_+$. A set $\mathcal{E}' \subset \mathcal{E}$ is ϵ -separated if, for any distinct points e and e' in \mathcal{E}' , $\rho(e, e') \ge \epsilon$. The ϵ -packing number of $\mathcal{E}'' \subset \mathcal{E}$, $\mathcal{M}(\epsilon, \mathcal{E}'', \rho)$, is the maximal cardinality of an ϵ -separated subset of \mathcal{E}'' , if such maximum exists. Otherwise, the ϵ -packing number of \mathcal{E}'' is defined to be infinite.

Lemma 1 (After Theorem IV in Kolmogorov and Tihomirov, 1961) Let (\mathcal{E}, ρ) be a pseudo-metric space. For every totally bounded set $\mathcal{E}' \subset \mathcal{E}$ and $\epsilon \in \mathbb{R}^*_+$,

$$\mathcal{N}^{int}\left(\epsilon,\mathcal{E}',
ho
ight)\leqslant\mathcal{M}\left(\epsilon,\mathcal{E}',
ho
ight)\leqslant\mathcal{N}^{int}\left(rac{\epsilon}{2},\mathcal{E}',
ho
ight).$$

Fat-Shattering Dimension

Definition 11 (Fat-shattering dimension, Kearns and Schapire, 1994) Let \mathcal{F} be a class of real-valued functions on \mathcal{T} . For $\gamma \in \mathbb{R}^*_+$, $s_{\mathcal{T}^n} = \{t_i : 1 \leq i \leq n\} \subset \mathcal{T}$ is said to be $\underline{\gamma}$ -shattered by \mathcal{F} if there is a vector

 $\mathbf{b}_n = (b_i)_{1 \leq i \leq n} \in \mathbb{R}^n$ such that, for every vector $\mathbf{s}_n = (s_i)_{1 \leq i \leq n} \in \{-1, 1\}^n$, there is a function $f_{\mathbf{s}_n} \in \mathcal{F}$ satisfying

$$\forall i \in \llbracket 1, n \rrbracket, \quad s_i \left(f_{l_n}(t_i) - b_i \right) \geq \gamma.$$

The fat-shattering dimension with margin γ of the class \mathcal{F} , γ -dim (\mathcal{F}) , is the maximal cardinality of a subset of \mathcal{T} γ -shattered by \mathcal{F} , if such maximum exists. Otherwise, \mathcal{F} is said to have infinite fat-shattering dimension with margin γ .

Empirical Pseudo-metrics

Definition 12 (Pseudo-distance d_{p,t_n})

Let \mathcal{F} be a class of real-valued functions on \mathcal{T} and $\mathbf{t}_n = (t_i)_{1 \leqslant i \leqslant n} \in \mathcal{T}^n$. Then,

$$\begin{cases} \forall p \in [1, +\infty), \forall (f, f') \in \mathcal{F}^2, \ d_{p, \mathbf{t}_n}(f, f') = \left(\frac{1}{n} \sum_{i=1}^n |f(t_i) - f'(t_i)|^p\right)^{\frac{1}{p}} \\ \forall (f, f') \in \mathcal{F}^2, \ d_{\infty, \mathbf{t}_n}(f, f') = \max_{1 \leqslant i \leqslant n} |f(t_i) - f'(t_i)| \end{cases}$$

Definition 13 (Uniform covering and packing numbers)

Let \mathcal{F} be a class of real-valued functions on \mathcal{T} and $\overline{\mathcal{F}} \subset \mathcal{F}$. For $p \in [1, +\infty]$, $\epsilon \in \mathbb{R}^*_+$ and $n \in \mathbb{N}^*$, the <u>uniform covering number</u> $\mathcal{N}_p(\epsilon, \overline{\mathcal{F}}, n)$ and the <u>uniform</u> packing number $\mathcal{M}_p(\epsilon, \overline{\mathcal{F}}, n)$ are defined as follows:

$$\begin{cases} \mathcal{N}_{p}\left(\epsilon,\bar{\mathcal{F}},n\right) = \sup_{\mathbf{t}_{n}\in\mathcal{T}^{n}}\mathcal{N}\left(\epsilon,\bar{\mathcal{F}},d_{p,\mathbf{t}_{n}}\right)\\ \mathcal{M}_{p}\left(\epsilon,\bar{\mathcal{F}},n\right) = \sup_{\mathbf{t}_{n}\in\mathcal{T}^{n}}\mathcal{M}\left(\epsilon,\bar{\mathcal{F}},d_{p,\mathbf{t}_{n}}\right) \end{cases}$$

Accordingly,

$$\mathcal{N}_{p}^{int}\left(\epsilon,\bar{\mathcal{F}},n\right)=\sup_{\mathbf{t}_{n}\in\mathcal{T}^{n}}\mathcal{N}^{int}\left(\epsilon,\bar{\mathcal{F}},d_{p,\mathbf{t}_{n}}\right).$$

Y. Guermeur (LORIA)

Transitions Between Capacity Measures

"Complete" Pathway

$$R\left(\mathcal{F}\right) \xrightarrow{\text{chaining}} \mathcal{N}_{p}^{\text{int}}\left(\epsilon, \mathcal{F}, n\right) \xrightarrow{\leqslant} \mathcal{M}_{p}\left(\epsilon, \mathcal{F}, n\right) \xrightarrow{\text{Sauer-Shelah lemma}} \gamma\text{-dim}\left(\mathcal{F}\right)$$

"Partial" Pathways

Depend on the choice of the norm, the classifier...

Theoretical Framework

- Agnostic Learning
- Margin Classifier

2 Scale-Sensitive Capacity Measures

- 3 State-of-the-Art Guaranteed Risks
 - \bullet Guaranteed Risk Based on the $L_\infty\text{-norm}$
 - Guaranteed Risk Based on the L2-norm

Dimension-Free Generalized Sauer-Shelah Lemmas

- State of the Art
- L_p-norm Sauer-Shelah Lemma
- L₂-norm Sauer-Shelah Lemma

5 Upper Bounding the Rademacher Complexity

- Chaining Method
- Polynomial Growth of the $\gamma\text{-dimension}$
- Multi-class Support Vector Machines

6 Conclusions and Ongoing Research

Guaranteed Risk Based on the L_{∞} -norm

Margin Loss Function

$$\forall \gamma \in (0,1], \ \forall t \in \mathbb{R}, \ \phi_{\infty,\gamma}(t) = \mathbb{1}_{\{t < \gamma\}}$$

Basic Supremum Inequality

Theorem 2 (After Theorem 22 in Guermeur, 2007)

Let \mathcal{G} be the class of functions computed by a margin multi-category classifier. Let $\gamma \in (0, 1]$ and $\delta \in (0, 1)$. With P^m -probability at least $1 - \delta$,

$$\sup_{g\in\mathcal{G}}\left(L(g)-L_{\gamma,m}(g)\right)\leqslant \sqrt{\frac{2}{m}\left(\ln\left(\mathcal{N}^{\textit{int}}_{\infty}\left(\frac{\gamma}{2},\mathcal{F}_{\mathcal{G},\gamma},2m\right)\right)+\ln\left(\frac{2}{\delta}\right)\right)+\frac{1}{m}}.$$

Guaranteed Risk Based on the $L_\infty\text{-norm}$ Decomposition Lemma

Lemma 2 (Lemma 1 in Guermeur, 2017)

Let \mathcal{G} be the class of functions computed by a margin multi-category classifier. Then for $\gamma \in (0,1]$, $\epsilon \in \mathbb{R}^*_+$, $m \in \mathbb{N}^*$ and $\mathbf{z}_m = ((x_i, y_i))_{1 \leqslant i \leqslant m} \in \mathcal{Z}^m$,

$$\forall p \in [1, +\infty], \ \mathcal{N}^{int}\left(\epsilon, \mathcal{F}_{\mathcal{G}, \gamma}, d_{p, \mathbf{z}_m}\right) \leqslant \prod_{k=1}^{C} \mathcal{N}^{int}\left(C^{-\frac{1}{p}} \epsilon, \mathcal{G}_k, d_{p, \mathbf{x}_m}\right),$$

where $\mathbf{x}_m = (x_i)_{1 \leq i \leq m}$.

Generalized Sauer-Shelah Lemma

Lemma 3 (After Lemma 3.5 in Alon et al., 1997)

Let \mathcal{F} be a class of functions from \mathcal{T} into $[-M_{\mathcal{F}}, M_{\mathcal{F}}]$. For $\epsilon \in (0, M_{\mathcal{F}}]$, let $d(\epsilon) = \epsilon$ -dim (\mathcal{F}) . Then for $\epsilon \in (0, 2M_{\mathcal{F}}]$ and $n \in \mathbb{N}^*$,

$$\mathcal{M}_{\infty}\left(\epsilon, \mathcal{F}, n\right) < 2\left(\frac{16M_{\mathcal{F}}^{2}n}{\epsilon^{2}}\right)^{d\left(\frac{\epsilon}{4}\right)\log_{2}\left(\frac{4M_{\mathcal{F}}en}{d\left(\frac{\epsilon}{4}\right)\epsilon}\right)}$$

Guaranteed Risk Based on the L_{∞} -norm

Theorem 3 (Theorem 3 in Guermeur, 2017)

Let \mathcal{G} be the class of functions computed by a margin multi-category classifier. For $\epsilon \in (0, M_{\mathcal{G}}]$, let $d(\epsilon) = \max_{1 \leq k \leq C} \epsilon$ -dim (\mathcal{G}_k) . Let $\gamma \in (0, 1]$ and $\delta \in (0, 1)$. With P^m -probability at least $1 - \delta$,

$$\sup_{g\in\mathcal{G}}\left(L(g)-L_{\gamma,m}(g)\right)\leqslant \sqrt{\frac{2}{m}\left(3Cd\left(\frac{\gamma}{8}\right)\ln^{2}\left(\frac{128M_{\mathcal{G}}^{2}m}{\gamma^{2}}\right)+\ln\left(\frac{2}{\delta}\right)\right)}+\frac{1}{m}.$$

Guaranteed Risk Based on the L_2 -norm

Margin Loss Function

$$orall\gamma\in(0,1]\,,\ orall t\in\mathbb{R},\ \ \phi_{2,\gamma}\left(t
ight)=1\!\!\!1_{\{t\leqslant0\}}+\left(1-rac{t}{\gamma}
ight)1\!\!\!1_{\{t\in(0,\gamma]\}}.$$

Basic Supremum Inequality

Theorem 4 (After Theorem 8.1 in Mohri et al., 2012)

Let \mathcal{G} be the class of functions computed by a margin multi-category classifier. Let $\gamma \in (0, 1]$ and $\delta \in (0, 1)$. With P^m -probability at least $1 - \delta$,

$$\sup_{g\in\mathcal{G}}\left(L_{\gamma}\left(g\right)-L_{\gamma,m}\left(g\right)\right)\leqslant\frac{2}{\gamma}R_{m}\left(\mathcal{F}_{\mathcal{G},\gamma}\right)+\sqrt{\frac{\ln\left(\frac{1}{\delta}\right)}{2m}}.$$

Guaranteed Risk Based on the L_2 -norm

Decomposition Lemma

Lemma 4 (Kuznetsov et al., 2014)

Let \mathcal{G} be the class of functions computed by a margin multi-category classifier. For $\gamma \in (0, 1]$,

$$R_m(\mathcal{F}_{\mathcal{G},\gamma}) \leqslant CR_m\left(\bigcup_{k=1}^C \mathcal{G}_k\right).$$

Theorem 5 (After Theorem 3 in Kuznetsov et al., 2014)

Let \mathcal{G} be the class of functions computed by a margin multi-category classifier. Let $\gamma \in (0, 1]$ and $\delta \in (0, 1)$. With P^m -probability at least $1 - \delta$,

$$\sup_{g \in \mathcal{G}} \left(L_{\gamma} \left(g \right) - L_{\gamma,m} \left(g \right) \right) \leqslant \frac{2C}{\gamma} R_m \left(\bigcup_{k=1}^{C} \mathcal{G}_k \right) + \sqrt{\frac{\ln \left(\frac{1}{\delta} \right)}{2m}}.$$

Theoretical Framework

- Agnostic Learning
- Margin Classifier
- 2 Scale-Sensitive Capacity Measures
- 3 State-of-the-Art Guaranteed Risks
 - Guaranteed Risk Based on the L_{∞} -norm
 - Guaranteed Risk Based on the L2-norm

Dimension-Free Generalized Sauer-Shelah Lemmas

- State of the Art
- L_p-norm Sauer-Shelah Lemma
- L₂-norm Sauer-Shelah Lemma

5 Upper Bounding the Rademacher Complexity

- Chaining Method
- Polynomial Growth of the γ -dimension
- Multi-class Support Vector Machines

6 Conclusions and Ongoing Research

State-of-the-Art L_p-norm Sauer-Shelah Lemma

Theorem 6 (After Theorem 3.2 in Mendelson, 2002)

Let \mathcal{F} be a class of functions from \mathcal{T} into $[-M_{\mathcal{F}}, M_{\mathcal{F}}]$. For $\epsilon \in (0, M_{\mathcal{F}}]$, let $d(\epsilon) = \epsilon$ -dim (\mathcal{F}) . Then for $\epsilon \in (0, 2M_{\mathcal{F}}]$ and $n \in \mathbb{N}^*$,

$$\forall p \in [1, +\infty), \ \ln\left(\mathcal{M}_{p}\left(\epsilon, \mathcal{F}, n\right)\right) \leqslant K_{p} \cdot d\left(\frac{\epsilon}{8}\right) \ln^{2}\left(\frac{2 \cdot d\left(\frac{\epsilon}{8}\right)}{\epsilon}\right),$$

where K_p is a constant depending only on p.

Main Lemmas in the Proof

Probabilistic Extraction Result

Lemma 5 (After Lemma 3.1 in Mendelson, 2002) Let \mathcal{F} be a class of functions from \mathcal{T} into $[M_{\mathcal{F}-}, M_{\mathcal{F}+}]$. For $n \in \mathbb{N}^*$, $\mathbf{t}_n = (t_i)_{1 \leq i \leq n} \in \mathcal{T}^n$, $p \in [1, +\infty)$ and $\epsilon \in [0, M_{\mathcal{F}+} - M_{\mathcal{F}-}]$, assume that $\mathcal{M}(\epsilon, \mathcal{F}, d_{p,\mathbf{t}_n}) > 1$. Then there exists a subvector \mathbf{t}_q of \mathbf{t}_n of size q satisfying $q \leq K_p \left(\frac{M_{\mathcal{F}+} - M_{\mathcal{F}-}}{\epsilon}\right)^p \ln \left(\mathcal{M}(\epsilon, \mathcal{F}, d_{p,\mathbf{t}_n})\right)$ such that $\mathcal{M}(\epsilon, \mathcal{F}, d_{p,\mathbf{t}_n}) \leq \mathcal{M}\left(\frac{\epsilon}{2}, \mathcal{F}, d_{\infty,\mathbf{t}_q}\right)$,

where K_p is a constant depending only on p.

Sauer-Shelah Lemma of Alon and co-authors (Lemma 3)

State-of-the-Art L2-norm Sauer-Shelah Lemma

Lemma 6 (After Theorem 1 in Mendelson and Vershynin, 2003)

Let \mathcal{F} be a class of functions from \mathcal{T} into $[-M_{\mathcal{F}}, M_{\mathcal{F}}]$. For $\epsilon \in (0, M_{\mathcal{F}}]$, let $d(\epsilon) = \epsilon$ -dim (\mathcal{F}) . Then for $\epsilon \in (0, 2M_{\mathcal{F}}]$ and $n \in \mathbb{N}^*$,

$$\mathcal{M}_{2}(\epsilon, \mathcal{F}, n) \leqslant \left(K\left(\frac{2M_{\mathcal{F}}}{\epsilon}\right)^{5} \right)^{4d\left(\frac{\epsilon}{96}\right)}$$

where K = 3584e.

Lemma 7

Let G be the class of functions computed by a margin multi-category classifier. Then, for $\epsilon \in (0, \gamma]$,

$$\ln\left(\mathcal{N}_{2}^{int}\left(\epsilon,\mathcal{F}_{\mathcal{G},\gamma},m\right)\right) \leqslant 20Cd\left(\frac{\epsilon}{96\sqrt{C}}\right)\ln\left(\frac{14M_{\mathcal{G}}\sqrt{C}}{\epsilon}\right)$$

where $d(\epsilon) = \max_{1 \leq k \leq C} \epsilon \operatorname{-dim}(\mathcal{G}_k)$.

Key Lemma in the Proof

Probabilistic Extraction Result

Lemma 8 (After Lemma 13 in Mendelson and Vershynin, 2003)

Let $\mathcal{T} = \{t_i : 1 \leq i \leq n\}$ be a finite set and $\mathbf{t}_n = (t_i)_{1 \leq i \leq n}$. Let \mathcal{F} be a finite class of functions from \mathcal{T} into $[-M_{\mathcal{F}}, M_{\mathcal{F}}]$. Assume that for some $\epsilon \in (0, 2M_{\mathcal{F}}]$, \mathcal{F} is ϵ -separated with respect to the pseudo-metric d_{2,\mathbf{t}_n} . If $r \in [1, n]$ is such that $|\mathcal{F}| \leq \exp(K_e r \epsilon^4)$ with

$$K_e = \frac{3}{112 \left(2M_{\mathcal{F}}\right)^4},$$

then there exists a subvector \mathbf{t}_q of \mathbf{t}_n of size $q \leq r$ such that \mathcal{F} is $\frac{\epsilon}{2}$ -separated with respect to the pseudo-metric d_{2,\mathbf{t}_q} .

Lp-norm Sauer-Shelah Lemma

Lemma 9 (Lemma 2 in Guermeur, 2017)

Let \mathcal{F} be a class of functions from \mathcal{T} into $[-M_{\mathcal{F}}, M_{\mathcal{F}}]$. For $\epsilon \in (0, M_{\mathcal{F}}]$, let $d(\epsilon) = \epsilon$ -dim (\mathcal{F}) . Then for $\epsilon \in (0, 2M_{\mathcal{F}}]$ and $n \in \mathbb{N}^*$,

$$\forall p \in [1, +\infty), \ \ \mathcal{M}_{p}\left(\epsilon, \mathcal{F}, n\right) \leqslant 4^{K_{\epsilon}(p)+1} \left(\frac{6272eK_{\epsilon}\left(p\right)}{3} \left(\frac{2M_{\mathcal{F}}}{\epsilon}\right)^{2p+1}\right)^{2K_{\epsilon}(p)d\left(\frac{\epsilon}{45}\right)},$$

$$where \ K_{\epsilon}\left(p\right) = \log_{2}\left(\left\lceil\left\lceil\frac{112M_{\mathcal{F}}}{\epsilon}\right\rceil^{p+2}\right\rceil\right).$$

A logarithmic factor is gained compared to Mendelson's lemma (Theorem 6).

Key Lemmas in the Proof

Main Combinatorial Result

Lemma 10 (L_p -norm extension of Lemma 8 in Bartlett and Long, 1995)

Let
$$\mathcal{T} = \{t_i : 1 \leq i \leq n\}$$
 be a finite set and $\mathbf{t}_n = (t_i)_{1 \leq i \leq n}$. Let \mathcal{F} be a class of functions from \mathcal{T} into $\mathcal{S} = \left\{2M_{\mathcal{F}}\frac{j}{N} : 0 \leq j \leq N\right\}$ with $M_{\mathcal{F}} \in \mathbb{R}^*_+$ and $N \in \mathbb{N} \setminus [\![0,3]\!]$. For $\epsilon \in \left(\frac{6M_{\mathcal{F}}}{N}, 2M_{\mathcal{F}}\right]$, let $d = \left(\frac{\epsilon}{2} - \frac{3M_{\mathcal{F}}}{N}\right)$ -dim (\mathcal{F}) . Then $\forall p \in [1, +\infty), \ \mathcal{M}(\epsilon, \mathcal{F}, d_{p, \mathbf{t}_n}) < 2 \left\lceil N^{p+2} \right\rceil \left(\frac{e(N-1)n}{d}\right)^{\log_2(\left\lceil N^{p+2} \right\rceil)d}$.

Probabilistic Extraction Result

 L_p -norm extension of Lemma 13 in Mendelson and Vershynin (2003)

L₂-norm Sauer-Shelah Lemma

Lemma 11

Let G be the class of functions computed by a margin multi-category classifier. Then for $\epsilon \in (0, \gamma]$,

$$\ln\left(\mathcal{M}_{2}\left(\epsilon,\mathcal{F}_{\mathcal{G},\gamma},\mathbf{m}\right)\right) \leqslant 3Cd\left(\frac{\epsilon}{16}\right)\ln^{2}\left(\frac{K\left(2M_{\mathcal{G}}\right)^{3}\gamma^{2}C^{\frac{3}{2}}d\left(\frac{\epsilon}{192\sqrt{C}}\right)}{\epsilon^{5}}\right)$$

where $d(\epsilon) = \max_{1 \leq k \leq C} \epsilon - dim(\mathcal{G}_k)$ and $K = \frac{143360}{3}$.

Idea: Use the L_2 -norm to get a dimension-free result and the L_{∞} -norm to optimize the dependency on *C* (get the best of two worlds)

Theoretical Framework

- Agnostic Learning
- Margin Classifier
- 2 Scale-Sensitive Capacity Measures
- State-of-the-Art Guaranteed Risks
 Guaranteed Risk Based on the L∞-norm
 - Guaranteed Risk Based on the L2-norm
- Dimension-Free Generalized Sauer-Shelah Lemmas
 - State of the Art
 - Lp-norm Sauer-Shelah Lemma
 - L2-norm Sauer-Shelah Lemma
- 5 Upper Bounding the Rademacher Complexity
 - Chaining Method
 - Polynomial Growth of the $\gamma\text{-dimension}$
 - Multi-class Support Vector Machines

Oconclusions and Ongoing Research

Chaining Method

Theorem 7 (Dudley's metric entropy bound)

Let \mathcal{F} be a class of bounded real-valued functions on \mathcal{T} . For $n \in \mathbb{N}^*$, let $\mathbf{t}_n = (t_i)_{1 \leq i \leq n} \in \mathcal{T}^n$ and let $diam(\mathcal{F}) = \sup_{(f,f') \in \mathcal{F}^2} d_{2,\mathbf{t}_n}(f,f')$. Let h be a positive and decreasing function on \mathbb{N} such that $h(0) \geq diam(\mathcal{F})$. Then for $N \in \mathbb{N}^*$,

$$\hat{R}_{n}(\mathcal{F}) \leq h(N) + 2\sum_{j=1}^{N} \left(h(j) + h(j-1)\right) \sqrt{\frac{\ln\left(\mathcal{N}^{int}\left(h(j), \mathcal{F}, d_{2,t_{n}}\right)\right)}{n}}$$

and

$$\hat{R}_n(\mathcal{F}) \leqslant 12 \int_0^{\frac{1}{2} \cdot diam(\mathcal{F})} \sqrt{\frac{\ln\left(\mathcal{N}^{int}\left(\epsilon, \mathcal{F}, d_{2, \mathbf{t}_n}\right)\right)}{n}} d\epsilon.$$

Polynomial Growth of the $\gamma\text{-dimension}$

Hypothesis 1

We consider margin multi-category classifiers for which there exists a pair $(d_{\mathcal{G}}, K_{\mathcal{G}}) \in (\mathbb{R}^*_+)^2$ such that

$$orall \epsilon \in (0, M_{\mathcal{G}}], \quad \max_{1 \leqslant k \leqslant C} \epsilon \text{-dim}\left(\mathcal{G}_k\right) \leqslant K_{\mathcal{G}} \epsilon^{-d_{\mathcal{G}}}.$$

Classifier	$d_{\mathcal{G}}$	Reference
MLP	4	(Bartlett, 1998)
M-SVM	2	(Bartlett and Shawe-Taylor, 1999)
LVQ	?	

Table : Characterization of γ -dimensions

Bound Based on the Lemma of Mendelson and Vershynin

Theorem 8 (Theorem 7 in Guermeur, 2017)

Let \mathcal{G} be a class of functions satisfying Hypothesis 1 and $\gamma \in (0,1]$.

where

$$F(C) = 2\left(\frac{14M_{\mathcal{G}}\sqrt{C}}{\gamma}\right)^{\frac{2-d_{\mathcal{G}}}{2}}$$

Bound Based on the New L_2 -norm Lemma

Theorem 9

Let $\mathcal G$ be a class of functions satisfying Hypothesis 1 and $\gamma \in (0,1]$. Then

$$R_{m}(\mathcal{F}_{\mathcal{G},\gamma}) \leqslant K(M_{\mathcal{G}},\gamma,d_{\mathcal{G}})F(m,C)$$

with

$d_{\mathcal{G}}$	F (m, C) (Guermeur, 2017)	F (m, C) Present study
	(Guermeur, 2017)	Present study
< 2	$\sqrt{\frac{C^{\frac{d_{\mathcal{G}}+2}{2}}\ln(C)}{m}}$	$\frac{\sqrt{C}\ln(C)}{\sqrt{m}}$
2	$\frac{C \ln^{\frac{3}{2}}\left(\frac{m}{C}\right)}{\sqrt{m}}$	$\frac{\sqrt{C}\ln(Cm)\ln(m)}{\sqrt{m}}$
> 2	$\sqrt{C} \left(\frac{C}{m}\right)^{\frac{1}{d_{\mathcal{G}}}} \sqrt{\ln\left(\frac{m}{C}\right)}$	$\frac{\sqrt{C}\ln(Cm)}{m^{\frac{1}{d_{\mathcal{G}}}}}$

Rademacher Complexity of a Linear Separator

Theorem 10 (Theorem 4.3 in Mohri et al., 2012) Let $\mathcal{H} = \{x \mapsto w \cdot x\}$ with $||x|| \leq \Lambda_x$ and $||w|| \leq \Lambda_w$. Then, $R_m(\mathcal{H}) \leq \frac{\Lambda_w \Lambda_x}{\sqrt{m}}.$

Covering Numbers of a Linear Separator

Theorem 11 (Theorem 4 in Zhang, 2002)
Let
$$\mathcal{H} = \{x \mapsto w \cdot x\}$$
 with $||x|| \leq \Lambda_x$ and $||w|| \leq \Lambda_w$. Then,
 $\ln \left(\mathcal{N}_{\infty}^{int}(\epsilon, \mathcal{H}, m)\right) \leq 36 \left(\frac{\Lambda_w \Lambda_x}{\epsilon}\right)^2 \ln \left(2 \left\lceil \frac{4\Lambda_w \Lambda_x}{\epsilon} + 2 \right\rceil m + 1\right).$

Conclusions and Ongoing Research

Conclusions

- **(**) The control terms of our guaranteed risks grow sublinearly with *C*.
- An optimal trade-off between this dependency and the convergence rate is to be looked for.

Ongoing research

- Application to LVQ
- 2 Derivation of lower bounds
- One of the phase transitions