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Agnostic Learning (Kearns et al., 1994)

Problem Characterization

1 Link between descriptions x ∈ X and their categories y ∈ Y = [[ 1,C ]]

2 Existence of a random pair (X ,Y ) taking values in Z = X × Y, distributed
according to a probability measure P

3 The joint distribution of (X ,Y ) is unknown.

What is available

1 Zm = ((Xi ,Yi ))16i6m: m-sample made up of independent copies of (X ,Y )

2 For k ∈ [[ 1,C ]], Gk : class of functions from X into [−MG ,MG ] with MG > 1
which is a uniform Glivenko-Cantelli class
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Uniform Glivenko-Cantelli class

Definition 1 (Dudley et al., 1991)

Let (T ,AT ) be a measurable space and let T be a random variable with values in
T , distributed according to a probability measure PT on (T ,AT ). For n ∈ N∗, let
Tn = (Ti )16i6n be an n-sample made up of independent copies of T . Let F be a
class of measurable functions on T . Then F is a uniform Glivenko-Cantelli class if
for every ε ∈ R∗+,

lim
n−→+∞

sup
PT

P
(

sup
n′>n

sup
f∈F

∣∣∣ET ′∼PTn′
[f (T ′)]− ET∼PT

[f (T )]
∣∣∣ > ε

)
= 0,

where P denotes the infinite product measure P∞T and PTn′ denotes the empirical
measure supported on Tn′ .
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Margin Classifier

Pattern Classification

1 G =
∏C

k=1 Gk : class of functions g = (gk)16k6C , from X into [−MG ,MG ]C

2 Decision rule dr: operator from G into (Y
⋃
{∗})X mapping g to drg

∀g ∈ G,∀x ∈ X ,

{∣∣argmax16k6C gk(x)
∣∣ = 1 =⇒ drg (x) = argmax16k6C gk(x)∣∣argmax16k6C gk(x)
∣∣ > 1 =⇒ drg (x) = ∗

where |·| returns the cardinality of its argument and ∗ stands for a dummy
category

Function Selection
Minimization over G of the risk L (g) = EZ∼P

[
1l{drg (X ) 6=Y}

]
= P (drg (X ) 6= Y )
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Margin

Definition 2 (Class of functions FG)

Let G be the class of functions computed by a margin multi-category classifier.
For every g ∈ G, the function fg from X × [[ 1,C ]] into [−MG ,MG ] is defined by:

∀ (x , k) ∈ X × [[ 1,C ]] , fg (x , k) =
1

2

(
gk (x)−max

l 6=k
gl (x)

)
.

Then, the class FG is defined as follows: FG = {fg : g ∈ G}.

Definition 3 (Margin)

Let g be a function computed by a margin multi-category classifier. The margin
of g on (x , y) is defined as fg (x , y).

1 L (g) = EZ∼P
[
1l{fg (Z)60}

]
2 The margin bears useful information on the generalization performance.
3 Its exploitation calls for the implementation of a scale-sensitive approach.
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Margin Risks

Definition 4 (Margin loss functions)

A class of margin loss functions φγ parameterized by γ ∈ (0, 1] is a class of
nonincreasing functions from R into [0, 1] satisfying:

1 ∀γ ∈ (0, 1] , φγ (0) = 1 ∧ φγ (γ) = 0;

2 ∀ (γ, γ′) ∈ (0, 1]2 , γ < γ′ =⇒ ∀t ∈ (0, γ) , φγ (t) 6 φγ′ (t).

Definition 5 (Margin risk)

Let G be the class of functions computed by a margin multi-category classifier and
φγ a margin loss function. The risk with margin γ of g ∈ G is defined as:

Lγ (g) = EZ∼P [φγ ◦ fg (Z )] .

Lγ,m (g) designates the corresponding empirical risk, measured on Zm.
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Guaranteed Risks

Definition 6 (Piecewise-linear squashing function πγ)

For γ ∈ (0, 1], the piecewise-linear squashing function πγ is defined by:

∀t ∈ R, πγ (t) = t1l{t∈(0,γ]} + γ1l{t>γ}.

Definition 7 (Class of functions FG,γ)

Let G be the class of functions computed by a margin multi-category classifier.
∀γ ∈ (0, 1], the class FG,γ is defined as follows: FG,γ = {fg ,γ = πγ ◦ fg : g ∈ G}.

Theorem 1 (Guaranteed risk)

Let G be the class of functions computed by a margin multi-category classifier.
Let γ ∈ (0, 1] and δ ∈ (0, 1). With Pm-probability at least 1− δ,

sup
g∈G

(L (g)− Lγ,m (g)) 6 F (C ,m, γ, δ, d (FG,γ))

where d (FG,γ) is a scale-sensitive measure of the capacity of FG,γ .
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Rademacher Complexity

Definition 8 (Rademacher complexity)

Let F be a class of real-valued functions on T . For n ∈ N∗, let Tn = (Ti )16i6n

be a sequence of n i.i.d. random variables taking values in T and let
σn = (σi )16i6n be a Rademacher sequence. The empirical Rademacher
complexity of F given Tn is

R̂n (F) = Eσn

[
sup
f∈F

1

n

n∑
i=1

σi f (Ti )

∣∣∣∣∣ Tn

]
.

The Rademacher complexity of F is

Rn (F) = ETn

[
R̂n (F)

]
= ETnσn

[
sup
f∈F

1

n

n∑
i=1

σi f (Ti )

]
.
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Covering Numbers

Figure : ε-net and ε-cover of a set E ′ in a pseudo-metric space (E , ρ)

Definition 9 (Covering numbers, Kolmogorov and Tihomirov, 1961)

N (ε, E ′, ρ): minimal number of open balls of radius ε needed to cover E ′ (or +∞)
N int (ε, E ′, ρ): the ε-nets considered are included in E ′ (proper to E ′)
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Packing Numbers

Definition 10 (Packing numbers, Kolmogorov and Tihomirov, 1961)

Let (E , ρ) be a pseudo-metric space and ε ∈ R∗+. A set E ′ ⊂ E is ε-separated if, for
any distinct points e and e′ in E ′, ρ (e, e′) > ε. The ε-packing number of E ′′ ⊂ E ,
M (ε, E ′′, ρ), is the maximal cardinality of an ε-separated subset of E ′′, if such
maximum exists. Otherwise, the ε-packing number of E ′′ is defined to be infinite.

Lemma 1 (After Theorem IV in Kolmogorov and Tihomirov, 1961)

Let (E , ρ) be a pseudo-metric space. For every totally bounded set E ′ ⊂ E and
ε ∈ R∗+,

N int (ε, E ′, ρ) 6M (ε, E ′, ρ) 6 N int
( ε

2
, E ′, ρ

)
.
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Fat-Shattering Dimension

Definition 11 (Fat-shattering dimension, Kearns and Schapire, 1994)

Let F be a class of real-valued functions on T . For γ ∈ R∗+,
sT n = {ti : 1 6 i 6 n} ⊂ T is said to be γ-shattered by F if there is a vector
bn = (bi )16i6n ∈ Rn such that, for every vector sn = (si )16i6n ∈ {−1, 1}n, there
is a function fsn ∈ F satisfying

∀i ∈ [[ 1, n ]] , si (fln (ti )− bi ) > γ.

The fat-shattering dimension with margin γ of the class F , γ-dim (F), is the
maximal cardinality of a subset of T γ-shattered by F , if such maximum exists.
Otherwise, F is said to have infinite fat-shattering dimension with margin γ.
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Empirical Pseudo-metrics

Definition 12 (Pseudo-distance dp,tn)

Let F be a class of real-valued functions on T and tn = (ti )16i6n ∈ T n. Then,{
∀p ∈ [1,+∞) ,∀ (f , f ′) ∈ F2, dp,tn (f , f ′) =

(
1
n

∑n
i=1 |f (ti )− f ′ (ti )|p

) 1
p

∀ (f , f ′) ∈ F2, d∞,tn (f , f ′) = max16i6n |f (ti )− f ′ (ti )|
.

Definition 13 (Uniform covering and packing numbers)

Let F be a class of real-valued functions on T and F̄ ⊂ F . For p ∈ [1,+∞],
ε ∈ R∗+ and n ∈ N∗, the uniform covering number Np

(
ε, F̄ , n

)
and the uniform

packing number Mp

(
ε, F̄ , n

)
are defined as follows:{

Np

(
ε, F̄ , n

)
= suptn∈T n N

(
ε, F̄ , dp,tn

)
Mp

(
ε, F̄ , n

)
= suptn∈T nM

(
ε, F̄ , dp,tn

) .

Accordingly,
N int

p

(
ε, F̄ , n

)
= sup

tn∈T n

N int
(
ε, F̄ , dp,tn

)
.
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Transitions Between Capacity Measures

”Complete” Pathway

R (F)
chaining−−−−→ N int

p (ε,F , n)
6−→Mp (ε,F , n)

Sauer-Shelah lemma−−−−−−−−−−−→ γ-dim (F)

”Partial” Pathways
Depend on the choice of the norm, the classifier. . .
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Guaranteed Risk Based on the L∞-norm

Margin Loss Function

∀γ ∈ (0, 1] , ∀t ∈ R, φ∞,γ(t) = 1l{t<γ}

Basic Supremum Inequality

Theorem 2 (After Theorem 22 in Guermeur, 2007)

Let G be the class of functions computed by a margin multi-category classifier.
Let γ ∈ (0, 1] and δ ∈ (0, 1). With Pm-probability at least 1− δ,

sup
g∈G

(L(g)− Lγ,m(g)) 6

√
2

m

(
ln
(
N int
∞

(γ
2
,FG,γ , 2m

))
+ ln

(
2

δ

))
+

1

m
.
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Guaranteed Risk Based on the L∞-norm
Decomposition Lemma

Lemma 2 (Lemma 1 in Guermeur, 2017)

Let G be the class of functions computed by a margin multi-category classifier.
Then for γ ∈ (0, 1], ε ∈ R∗+, m ∈ N∗ and zm = ((xi , yi ))16i6m ∈ Zm,

∀p ∈ [1,+∞] , N int (ε,FG,γ , dp,zm) 6
C∏

k=1

N int
(

C−
1
p ε,Gk , dp,xm

)
,

where xm = (xi )16i6m.

Generalized Sauer-Shelah Lemma

Lemma 3 (After Lemma 3.5 in Alon et al., 1997)

Let F be a class of functions from T into [−MF ,MF ]. For ε ∈ (0,MF ], let
d (ε) = ε-dim (F). Then for ε ∈ (0, 2MF ] and n ∈ N∗,

M∞ (ε,F , n) < 2

(
16M2

Fn

ε2

)d( ε
4 ) log2

(
4MF en

d( ε
4 )ε

)
.
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Guaranteed Risk Based on the L∞-norm

Theorem 3 (Theorem 3 in Guermeur, 2017)

Let G be the class of functions computed by a margin multi-category classifier.
For ε ∈ (0,MG ], let d (ε) = max16k6C ε-dim (Gk). Let γ ∈ (0, 1] and δ ∈ (0, 1).
With Pm-probability at least 1− δ,

sup
g∈G

(L(g)− Lγ,m(g)) 6

√
2

m

(
3Cd

(γ
8

)
ln2

(
128M2

Gm

γ2

)
+ ln

(
2

δ

))
+

1

m
.
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Guaranteed Risk Based on the L2-norm

Margin Loss Function

∀γ ∈ (0, 1] , ∀t ∈ R, φ2,γ (t) = 1l{t60} +

(
1− t

γ

)
1l{t∈(0,γ]}.

Basic Supremum Inequality

Theorem 4 (After Theorem 8.1 in Mohri et al., 2012)

Let G be the class of functions computed by a margin multi-category classifier.
Let γ ∈ (0, 1] and δ ∈ (0, 1). With Pm-probability at least 1− δ,

sup
g∈G

(Lγ (g)− Lγ,m (g)) 6
2

γ
Rm (FG,γ) +

√
ln
(
1
δ

)
2m

.
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Guaranteed Risk Based on the L2-norm

Decomposition Lemma

Lemma 4 (Kuznetsov et al., 2014)

Let G be the class of functions computed by a margin multi-category classifier.
For γ ∈ (0, 1],

Rm (FG,γ) 6 CRm

(
C⋃

k=1

Gk

)
.

Theorem 5 (After Theorem 3 in Kuznetsov et al., 2014)

Let G be the class of functions computed by a margin multi-category classifier.
Let γ ∈ (0, 1] and δ ∈ (0, 1). With Pm-probability at least 1− δ,

sup
g∈G

(Lγ (g)− Lγ,m (g)) 6
2C

γ
Rm

(
C⋃

k=1

Gk

)
+

√
ln
(
1
δ

)
2m

.
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State-of-the-Art Lp-norm Sauer-Shelah Lemma

Theorem 6 (After Theorem 3.2 in Mendelson, 2002)

Let F be a class of functions from T into [−MF ,MF ]. For ε ∈ (0,MF ], let
d (ε) = ε-dim (F). Then for ε ∈ (0, 2MF ] and n ∈ N∗,

∀p ∈ [1,+∞) , ln (Mp (ε,F , n)) 6 Kp · d
( ε

8

)
ln2

(
2 · d

(
ε
8

)
ε

)
,

where Kp is a constant depending only on p.
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Main Lemmas in the Proof

Probabilistic Extraction Result

Lemma 5 (After Lemma 3.1 in Mendelson, 2002)

Let F be a class of functions from T into [MF−,MF+]. For n ∈ N∗,
tn = (ti )16i6n ∈ T n, p ∈ [1,+∞) and ε ∈ [0,MF+ −MF−], assume that
M (ε,F , dp,tn) > 1. Then there exists a subvector tq of tn of size q satisfying

q 6 Kp

(
MF+−MF−

ε

)p
ln (M (ε,F , dp,tn)) such that

M (ε,F , dp,tn) 6M
( ε

2
,F , d∞,tq

)
,

where Kp is a constant depending only on p.

Sauer-Shelah Lemma of Alon and co-authors (Lemma 3)
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State-of-the-Art L2-norm Sauer-Shelah Lemma

Lemma 6 (After Theorem 1 in Mendelson and Vershynin, 2003)

Let F be a class of functions from T into [−MF ,MF ]. For ε ∈ (0,MF ], let
d (ε) = ε-dim (F). Then for ε ∈ (0, 2MF ] and n ∈ N∗,

M2 (ε,F , n) 6

(
K

(
2MF
ε

)5
)4d( ε

96 )

where K = 3584e.

Lemma 7
Let G be the class of functions computed by a margin multi-category classifier.
Then, for ε ∈ (0, γ],

ln
(
N int

2 (ε,FG,γ ,m)
)
6 20Cd

(
ε

96
√

C

)
ln

(
14MG

√
C

ε

)

where d (ε) = max16k6C ε-dim (Gk).
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Key Lemma in the Proof

Probabilistic Extraction Result

Lemma 8 (After Lemma 13 in Mendelson and Vershynin, 2003)

Let T = {ti : 1 6 i 6 n} be a finite set and tn = (ti )16i6n. Let F be a finite
class of functions from T into [−MF ,MF ]. Assume that for some ε ∈ (0, 2MF ],
F is ε-separated with respect to the pseudo-metric d2,tn . If r ∈ [1, n] is such that
|F| 6 exp

(
Kerε4

)
with

Ke =
3

112 (2MF )4
,

then there exists a subvector tq of tn of size q 6 r such that F is ε
2 -separated

with respect to the pseudo-metric d2,tq .
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Lp-norm Sauer-Shelah Lemma

Lemma 9 (Lemma 2 in Guermeur, 2017)

Let F be a class of functions from T into [−MF ,MF ]. For ε ∈ (0,MF ], let
d (ε) = ε-dim (F). Then for ε ∈ (0, 2MF ] and n ∈ N∗,

∀p ∈ [1,+∞) , Mp (ε,F , n) 6 4Kε(p)+1

(
6272eKε (p)

3

(
2MF
ε

)2p+1
)2Kε(p)d( ε

45 )

,

where Kε (p) = log2

(⌈⌈
112MF
ε

⌉p+2
⌉)

.

A logarithmic factor is gained compared to Mendelson’s lemma (Theorem 6).
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Key Lemmas in the Proof

Main Combinatorial Result

Lemma 10 (Lp-norm extension of Lemma 8 in Bartlett and Long,
1995)

Let T = {ti : 1 6 i 6 n} be a finite set and tn = (ti )16i6n. Let F be a class of

functions from T into S =
{

2MF
j
N : 0 6 j 6 N

}
with MF ∈ R∗+ and

N ∈ N \ [[ 0, 3 ]]. For ε ∈
(
6MF
N , 2MF

]
, let d =

(
ε
2 −

3MF
N

)
-dim (F). Then

∀p ∈ [1,+∞) , M (ε,F , dp,tn) < 2
⌈
Np+2

⌉(e (N − 1) n

d

)log2(dNp+2e)d
.

Probabilistic Extraction Result
Lp-norm extension of Lemma 13 in Mendelson and Vershynin (2003)
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L2-norm Sauer-Shelah Lemma

Lemma 11
Let G be the class of functions computed by a margin multi-category classifier.
Then for ε ∈ (0, γ],

ln (M2 (ε,FG,γ ,m)) 6 3Cd
( ε

16

)
ln2

K (2MG)3 γ2C
3
2 d
(

ε
192
√
C

)
ε5


where d (ε) = max16k6C ε-dim (Gk) and K = 143360

3 .

Idea: Use the L2-norm to get a dimension-free result and the L∞-norm to
optimize the dependency on C (get the best of two worlds)
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Chaining Method

Theorem 7 (Dudley’s metric entropy bound)

Let F be a class of bounded real-valued functions on T . For n ∈ N∗, let
tn = (ti )16i6n ∈ T n and let diam (F) = sup(f ,f ′)∈F2 d2,tn (f , f ′). Let h be a
positive and decreasing function on N such that h (0) > diam (F). Then for
N ∈ N∗,

R̂n (F) 6 h (N) + 2
N∑
j=1

(h (j) + h (j − 1))

√
ln (N int (h (j) ,F , d2,tn))

n

and

R̂n (F) 6 12

∫ 1
2 ·diam(F)

0

√
ln (N int (ε,F , d2,tn))

n
dε.
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Polynomial Growth of the γ-dimension

Hypothesis 1

We consider margin multi-category classifiers for which there exists a pair

(dG ,KG) ∈
(
R∗+
)2

such that

∀ε ∈ (0,MG ] , max
16k6C

ε-dim (Gk) 6 KGε
−dG .

Classifier dG Reference
MLP 4 (Bartlett, 1998)

M-SVM 2 (Bartlett and Shawe-Taylor, 1999)
LVQ ?

Table : Characterization of γ-dimensions
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Bound Based on the Lemma of Mendelson and Vershynin

Theorem 8 (Theorem 7 in Guermeur, 2017)

Let G be a class of functions satisfying Hypothesis 1 and γ ∈ (0, 1].

dG Bound on Rm (FG,γ)

< 2 8 1+2
2

2−dG√
2(2−dG)

γ1−
dG
2

√
5·96dGKG

m C
dG+2

4

{√
ln (F (C )) +

√
1

4 ln(F (C))

}
2 γC

3
4√
m

+ 1152
√

5KG
m C

⌈
1
2 log2

(
m
C

)⌉√
ln

(
14MG

√
m

γC
1
4

)
> 2 γ

√
C
(
C
m

) 1
dG

(
1 + 8

(
1 + 2

2
dG−2

)
γ−

dG
2

√
5 · 96dGKG

√
ln
(

14MG
γ

(
m
C

) 1
dG

))
where

F (C ) = 2

(
14MG

√
C

γ

) 2−dG
2

.
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Bound Based on the New L2-norm Lemma

Theorem 9

Let G be a class of functions satisfying Hypothesis 1 and γ ∈ (0, 1]. Then

Rm (FG,γ) 6 K (MG , γ, dG) F (m,C )

with

dG F (m,C ) F (m,C )
(Guermeur, 2017) Present study

< 2

√
C

dG+2

2 ln(C)
m

√
C ln(C)√

m

2
C ln

3
2 (m

C )√
m

√
C ln(Cm) ln(m)√

m

> 2
√

C
(
C
m

) 1
dG

√
ln
(
m
C

) √
C ln(Cm)

m
1

dG
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Rademacher Complexity of a Linear Separator

Theorem 10 (Theorem 4.3 in Mohri et al., 2012)

Let H = {x 7→ w · x} with ‖x‖ 6 Λx and ‖w‖ 6 Λw . Then,

Rm (H) 6
ΛwΛx√

m
.
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Covering Numbers of a Linear Separator

Theorem 11 (Theorem 4 in Zhang, 2002)

Let H = {x 7→ w · x} with ‖x‖ 6 Λx and ‖w‖ 6 Λw . Then,

ln
(
N int
∞ (ε,H,m)

)
6 36

(
ΛwΛx

ε

)2

ln

(
2

⌈
4ΛwΛx

ε
+ 2

⌉
m + 1

)
.
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Conclusions and Ongoing Research

Conclusions

1 The control terms of our guaranteed risks grow sublinearly with C .

2 An optimal trade-off between this dependency and the convergence rate is to
be looked for.

Ongoing research

1 Application to LVQ

2 Derivation of lower bounds

3 Characterization of the phase transitions
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